Can Linear Approximation Improve Performance Prediction ?
نویسندگان
چکیده
Software performance evaluation relies on the ability of simple models to predict the performance of complex systems. Often, however, the models are not capturing potentially relevant effects in system behavior, such as sharing of memory caches or sharing of cores by hardware threads. The goal of this paper is to investigate whether and to what degree a simple linear adjustment of service demands in software performance models captures these effects and thus improves accuracy. Outlined experiments explore the limits of the approach on two hardware platforms that include shared caches and hardware threads, with results indicating that the approach can improve throughput prediction accuracy significantly, but can also lead to loss of accuracy when the performance models are otherwise defective.
منابع مشابه
A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملNew Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کاملEfficient Feature Group Sequencing for Anytime Linear Prediction
We consider anytime linear prediction in the common machine learning setting, where features are in groups that have costs. We achieve anytime (or interruptible) predictions by sequencing the computation of feature groups and reporting results using the computed features at interruption. We extend Orthogonal Matching Pursuit (OMP) and Forward Regression (FR) to learn the sequencing greedily und...
متن کاملAdaptive Memory Based Regression Methods
The task of approximating a non linear mapping using a limited number of observations, asks the data analyst to make several choices involving the set of relevant variables and observations, the learning algorithm, and the validation protocol. In the case of models which are linear in the parameters (e.g. polynomials), statistical theory and economical cross-validat ion met hods provide fast an...
متن کاملAn Evaluation of Four Electrolyte Models for the Prediction of Thermodynamic Properties of Aqueous Electrolyte Solutions
In this work, the performance of four electrolyte models for prediction the osmotic and activity coefficients of different aqueous salt solutions at 298 K, atmospheric pressure and in a wide range of concentrations are evaluated. In two of these models, (electrolyte Non-Random Two-Liquid e-NRTL and Mean Spherical Approximation-Non-Random Two-Liquid MSA-NRTL), association between ions of opposit...
متن کامل